Date: 27TH MARCH,2021

VIRTUAL COACHING CLASSES ORGANISED BY BOS (ACADEMIC), ICAI

FOUNDATION LEVEL PAPER 3: BUSINESS MATHEMATICS AND LOGICAL REASONING & STATISTICS

Faculty: CA Rashmi Lonikar, M.Sc., FCA, DISA

© THE INSTITUTE OF CHARTERED ACCOUNTANTS OF INDIA

UNIVARIATE & BIVARIATE DISTRIBUTION

- Univariate distribution is the simplest distribution.
- It takes data and summarises it. Then it tries to find patterns.
- Eg Investment needed to yield a particular level of profit.
- WE use mean, median, mode, quartiles, dispersion, range, standard deviation for it.
- Can be easily represented as frequency charts, bar charts, histograms, pie charts etc
- Bivariate data is when data is collected about two variables

MARGINAL DISTRIBUTION

Marginal distributions are the totals for the probabilities. They are found in the margins.

× ×	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>p</i> ₁ (1)↓			
<i>y</i> 1	4/32	2/32	1/32	1/32	8/32			
<i>y</i> 2	3/32	6/32	3/32	3/32	15/32			
<i>y</i> 3	9/32	0	0	0	9/32			
$p_X(x) \rightarrow$	16/32	8/32	4/32	4/32	32/32			
Joint and marginal distributions of a pair of discrete random variables, X and Y, having nonzero mutual								

random variables, X and Y, having nonzero mutual information (X; Y). The values of the joint distribution are in the 3×4 rectangle; the values of the marginal distributions are along the right and bottom margins.

CONDITIONAL DISTRIBUTION

A conditional distribution is a **probability distribution** for a **sub-population**.

it shows the **probability** that a randomly selected item in a sub-population has a characteristic you're interested in

i\	j	1	2	3	4	5	6	$p_X(i)$
1	1,	/36	1/36	1/36	1/36	1/36	1/36	1/6
2	1,	/36	1/36	1/36	1/36	1/36	1/36	1/6
3	1,	/36	1/36	1/36	1/36	1/36	1/36	1/6
4	1,	/36	1/36	1/36	1/36	1/36	1/36	1/6
5	1,	/36	1/36	1/36	1/36	1/36	1/36	1/6
6	1,	/36	1/36	1/36	1/36	1/36	1/36	1/6
$p_Y($	(j) 1	/6	1/6	1/6	1/6	1/6	1/6	1

CORRELATION ANALYSIS

Let us consider the example of investment and profit, correlation helps us find

- A) whether there is a relation between the two
- B) The extent of relation between the two
- Is correlation CO + RELATION
- CAUSE- EFFECT RELATIONSHIP

The measures of are

- Product moment correlation
- Rank correlation coefficient
- Coefficient of concurrent deviations

Correlation analysis is a **statistical method** used to evaluate the **strength of relationship** between two quantitative variable

It is represented by 'r'

```
It ranges between -1 and +1
```

It quantifies the direction and strength of the linear association between the two variables.

Eg r = 0.9 - a strong, positive association

- r = -0.2 suggest a weak, negative association.
- r=0 no linear association between two continuous variables.

• GRAPHS

PROPERTIES

• 1. R IS UNIT-FREE

2. Change of origin and scale. If a, c are origins of x and y and b and d are scales such that

U = x-a/b v= y-c/d. If b and d have opposite sign, r_{xy} and r_{uv} will have different signs and magnitude are equal.

Correlation

FORMULAE

PEARSON'S COFFICIENT

Complete formula is

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right]\left[n\Sigma y^2 - (\Sigma y)^2\right]}}$$

In terms of covariance and Standard deviation- by dividing above formula by n²

Covariance and Std deviations are

$$r = r_{xy} = \frac{Cov(x, y)}{S_x \times S_y}$$

© THE INSTITUTE OF CHARTERED ACCOUNTANTS OF INDIA

OTHER FORMULAE

$$\operatorname{cov}(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n} = \frac{\sum x_i y_i}{n} - \overline{x} \overline{y}$$

$$S_{X} = \sqrt{\frac{\sum (x_{i} - \overline{x})^{2}}{n}} = \sqrt{\frac{\sum x_{i}^{2}}{n} - \overline{x}^{2}}$$

$$S_{y} = \sqrt{\frac{\Sigma \left(y_{i} - \overline{y}\right)^{2}}{n}} = \sqrt{\frac{\Sigma y_{i}^{2}}{n} - \overline{y}^{2}}$$

27 March 2021

Question Time! –

Remember we must know Σx , Σy , Σxy , Σy^2 , Σx^2 18.3,

- Σx = 247
 - Σy = 486
 - Σxy = 20,485
 - Σx² = 11,409
 - Σy² = 40,022
 - n is the sample size, in our case = 6
- Ans : r = 0.5298

• Q	x	2	3	5	5	6	8
	у	9	8	8	6	5	3

• Ans r = -0.93

• Q .	х	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
	У	11	12	13	20	19	20	25	30

Ans r = 0.96

Q r = , n = 20, AM and SD of x and y are 12 and 15 and 3 and 4 respectively. The pair(20,15) was wrongly taken as (15,20). Find correct r.

(hint: First find cov, then sum xy, corrected sum x and sum y, corrected sum sr x sum sr y)

Answer r = 0.31

Q1 PG. 18.47 If two variables x and y covariance, variance of x, variance of y are 40, 16,256 respectively, find correlation coefficient. Ans : 0.625

For two qualitative characteristics

Finds level of agreement

Simpler, used to get first hand impression

r lies between -1 to +1

 $d_i = x_i - y_i$ represents difference in ranks for the ith individual

Correlation

- Always remember: The numbering/ranking will be from 1 to n
- If a number is repeated twice t³-t¹ = 2³-2 = 6, if number is repeated thrice t³-t = 3³-3 = 24.
- Calculate Rank Correlation coefficient

	Marks in Eco	80	56	50	48	50	62	60
	Marks in Stats	90	75	75	65	65	50	65
• Ans: 0	.15							

Q: The coefficient of rank correlation is:

Rank in botany: 1 2 3 4 5

Rank in Chemistry: 2 3 1 5 4

Ans: 0.60

Q: The coefficient of rank correlation of marks obtained by 10 students in English and Economics was 0.50. It was found that one difference in ranks was wrongly taken as 3 instead of 7. The correct coefficient of rank correlation is

Ans: 0.26

1. The coefficient of correlation r between x and y when cov(x,y) = -16.5, var(x) = 2.89 var(y) = 100

Ans: -0.97

2. The covariance between 2 variables x and y is 8.4 and their variances are 25 and 36 respectively. Calculate Karl Pearson's coefficient of correlation between them is

Ans: 0.28

3. If r = 0.28, cov(x,y) = 7.6, var(x) = 9 . Then **σ**y is Ans: 9.04

COEFFICIENT OF CONCURRENT DEVIATIONS

Simple and casual method

Add a + sign if the number is more than previous number in the column

Add a --ive sign if the number is less than previous number in the column

Do this for both x and y column. Multiply the columns

If sign in both x and y are same, it is said to be concurrent

M = number of pairs -1

C = number of positives(concurrent) in the multiplication columns

Q 18.15 on pg. 18.24, Find concurrent deviation of

Example 18.15: Find the coefficient of concurrent deviations from the following data.

Year :	1990	1991	1992	1993	1994	1995	1996	1997
Price :	25	28	30	23	35	38	39	42
Demand :	35	34	35	30	29	28	26	23

Ans : -0.65

Q: For 10 pairs of observations, number of concurrent deviations was found to be 4. What is the value of the coefficient of concurrent deviations ?

Ans: - 1/3

27 March 2021

18.6 on pg. 18.15

Coefficient of correlation between x and y for 20 items is 0.4. The AM and SD of x and y are known to be 12 and 15 an 3 and 4 respectively. Later on it was found that a pair (20,15) was wrongly taken as (15,20). Find the correct value of correlation coefficient.

Ans: 0.31

PROPERTIES

Q: The Coefficient of correlation between x and y is 0.60. u and v are two variables defined as u = (x-3)/2 and v = (y-2)/3, then the coefficient of correlation between u and v is

Ans: 0.60

DETERMINATION/ NON-DETERMINATION

Coefficient of determination measures relationship between 2 variables indicating the amount of variation of one variable accounted for by the other variable

R² = Explained variance / Total variance

Coefficient of non-determination = (1- R²)

Q: If r = 0.60 then the coefficient of non-determination is

Ans: 0.64

Q: If the coefficient of correlation between x and y variables is -0.90 then what will be the coefficient of determination

Ans: 0.81

PROBABLE ERROR

Probable error defines the <u>half-range</u> of an interval about a <u>central point</u> for the distribution, such that half of the values from the distribution will lie within the interval and half outside.

IMPORTANT:

(1) If r < PE, there is no evidence of correlation.

(2) If r >= 6PE, then presence of correlation is certain

(3) PE is never negative.

Probable Error is a method of obtaining correlation coefficient of population. It is defined as:

 $P.E = 0.674 \times \frac{1 - r^2}{\sqrt{N}}$

Where r = Correlation coefficient from pairs of sample observations

$$PE = \frac{2}{3} SE$$

When SE = Standard Error of correlation coefficient

$$S.E = \times \frac{1 - r^2}{\sqrt{N}}$$

The limit of the correlation coefficient is given by $p = r \pm P.E$ Where p = Correlation coefficient of the population Q: 18.21/pg. 18.38

Compute probable error assuming coefficient of correlation to be 0.80 and a sample of 25 pairs of items.

Q: find probable error if $r = 2/\sqrt{10}$ and n - 36

Ans: 0.067

Q: 18.22

If r = 0.7 and n = 64, find PE and determine limits for the population coefficient of correlation

```
Ans: (0.7 + 0.043) (0.7 - 0.043) = (0.743, 0.657)
```

THEORY

Q: In rank correlation the association need not be linear

(a) True (b) False (c) Partly true (d) Partly false

Q: If coefficient of correlation between a and y is 0.46. Find coefficient of correlation between x and y/2

Ans: 0.46

Q: If ranks of 2 characteristics by 2 judges are in reverse order then the value of Spearman's rank correlation coefficient is

Ans: -1.0

Q: Correlation coefficient between x and y will be negative when:

(a) x and y are decreasing (b) x is increasing , y is decreasing

© x and y are increasing (d) NOT

Ans : b

Q: If r is simple correlation coefficient, then r^2 is called as

Ans: Coefficient of determination

Q: If the sum of products of x and y series from their mean is zero, then the correlation will be

Ans: 0

Q: Two variables x and y are relate as 4x + 3y = 7, then correlation between x and y is

(a) perfectly positive (b) Perfectly negative (c) Zero (d) NOT

Ans: Perfectly negative

Q: The speed of an automobile and the distance required to stop the car after applying brakes , the correlation is

```
(a) positive (b) Negative (c) zero (d) NOT
```


THANK YOU

27 March 2021

© THE INSTITUTE OF CHARTERED ACCOUNTANTS OF INDIA